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Vestibular research on human perception of self-motion and orientation generally 
uses the head-based coordinate system standardized by Hixson, Niven, and Correia 
(1966) for specifying accelerations of the subject. This paper expands the head- 
based system to include velocities, thereby incorporating both the visual and 
vestibular systems, and formally defines the resulting concept of a subject- 
coincident coordinate system. By capturing the organism's vantage point during 
self-motion, subject-coincident systems give a natural framework for studying the 
relationship between stimulus, physiology, and perception; however, the essential 
approach differs from that familiar in traditional physics, so the necessary 
equations of motion are developed here. In addition, these equations are used to 
investigate the set of sustained motions, those motions that can be sustained over 
a period of time. These motions can cause disorientation and misperception of 
motion because of saturation or adaptation of the human sensory receptors. The 
results on sustained motions are summarized in a complete categorization of the 
set of sustained motions. 

1. INTRODUCTION 

A physicist rarely asks a moving particle, "How do you feel during this 
motion?" We do not expect the physicist to ask such a question, as long as 
the physics explains the overall motion of the particle. On the other hand, 
researchers of self-motion perception are quite interested in how a subject 
feels and how the sensory systems are stimulated during a given motion of 
the subject. While standard equations from physics and engineering are useful 
for describing and analyzing a subject's overall motion, a description and 
analysis of the motion from the subject's point of view requires equations 
and mathematical structures custom-made for research in neuroscience. 
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Neurophysiology often deals with a stimulus to the organism, the stimu- 
lus' effect on the sensory receptors, and the ensuing effects within the central 
nervous system. The stimulus in an experiment is usually simple--pressure 
on the skin, an auditory tone, a flash of light, linear acceleration in a straight 
line--allowing the scientist to focus more attention on the succeeding neural 
events. However, the stimulus of motion is, by nature, multidimensional and 
complex. As we study natural movement of humans and other organisms, 
complexity creeps up on us from all directions, in the three dimensions of 
velocity, the three dimensions of acceleration, and especially in the interrela- 
tionships between the various components of motion. A thorough understand- 
ing of the stimulus, however complicated, is necessary in our exploration of 
the sensing, perceiving organism. 

Studies of self-motion perception are numerous, as can be seen in reviews 
by Guedry (1974, 1992) and Dichgans and Brandt (1978). NASA and the 
Armed Forces are particularly interested in understanding self-motion percep- 
tion because of the unusual conditions encountered during air- and spaceflight. 
Many aircraft accidents occur each year due to pilot disorientation. One 
example of a disorienting and dangerous situation is the graveyard spiral, in 
which the airplane travels in a coordinated turn (meaning that the pilot feels 
no forces to the left or right) while descending. If the pilot interprets the 
sensory cues as signaling descent with no turn, he or she may pull back on 
the stick to stop the descent. However, this will pull the airplane into a tighter 
spiral and a faster descent. Disorientation and misperception of motion occur 
not only in the graveyard spiral, but also in the graveyard spin, the leans, 
and many other situations in flight (see, for example, Peters, 1969). 

Misperception of motion is obviously dangerous in an airplane, but it 
also has consequences in other forms of modern transportation such as cars, 
boats, buses, bicycles, trains, etc., and even when walking, standing, or sitting. 
Our sense of balance is something we often take for granted, but many 
persons with vestibular disorders deal with a constant struggle to determine 
who is moving: "Am I starting to fall forward, or is my friend starting to 
lean toward me?" A better understanding of human sensory systems and the 
central nervous system's "production" of perception would be helpful to 
clinical medicine. 

Physiologically, the vestibular system of the inner ear is known to 
play a major role in self-motion perception. With the three approximately 
orthogonal semicircular canals on each side of the head, all directions of 
angular acceleration in three dimensions are detected, and with the pair of 
otolith organs on each side, all directions of linear acceleration are detected. 
The visual system also plays a major role in motion perception, with its 
ability to detect all directions of velocity, both angular and linear. Other 
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sensory systems, such as the somatosensory and auditory systems, also 
contribute. 

Toward an understanding of the physiological and psychological pro- 
cesses involved, research has analyzed perception of self-motion during many 
different kinds of motion. A simple example is on-axis rotation with a vertical 
axis. In particular, studies have shown that during sustained constant rotation 
on a rotating chair in the dark, a subject will feel stationary despite the 
continuing rotation. The sensation of stationarity may begin anywhere from 
a few seconds to a few minutes after the chair has reached constant velocity, 
depending on the startup acceleration; see Guedry (1974) for a review of the 
literature. Various studies of this nature have been done, each examining 
perception during a particular kind of motion. 

The stimuli in such experiments have often been simple, but research 
is heading in the direction of more and more complicated motions (see, for 
example, Guedry et al., 1992). For this reason, a solid grasp of the basic 
description of motion is necessary, especially as applies to perception. Hixson 
et al. (1966) recognized the necessity of a standard by which to describe the 
motion of a subject, and they provide a useful standard for specifying the 
linear and angular accelerations in a coordinate system oriented with the head 
[also described in Guedry (1974)]. This system has since been used by many 
researchers; however, Hixson et al. (1966) concentrate on the vestibular 
system, and therefore discuss accelerations, but not velocities. Naturally, 
velocity is equally important in the description of human movement when 
vision is available, so this paper includes both velocities and accelerations 
in a description of human movement. 

We present the notion of a subject-coincident coordinate system in which 
velocities and accelerations, as well as orientation relative to the gravitational 
field, can be measured; these subject-coincident systems incorporate the fact 
that the sensory receptors of a subject move with the subject. While certain 
coordinate systems familiar in traditional physics and engineering have 
selected features in common with subject-coincident systems, we define 
subject-coincident systems explicitly to embody those properties relevant to 
the study of human self-motion perception, and develop the equations relating 
different components of motion as perceived by the moving subject. 

With the foundation of subject-coincident coordinate systems, we then 
demonstrate a complete categorization of sustained motions. These are 
motions that can be sustained over time, the exact definition being given in 
Section 3. A constant-velocity version of the pilots' graveyard spiral is a 
sustained motion, as are rotation in a rotating chair, flying straight at 800 
km/hr in a passenger jet, and standing stationary on the ground. One reason 
to study this class of motions is that they can cause the vestibular system to 
saturate or adapt in the sense that the peripheral receptor response levels off, 
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not necessarily at the resting level, leading to misperceptions and disorienta- 
tion. In fact, many sustained motions are perceptually indistinguishable. For 
example, a passenger in a jet during calm flight feels just as though the jet 
is not moving; even if the sound of the engines is used as a clue, the passenger 
could probably say at most, "I am moving," but not discern the speed of 
flight. While this example is quite simple, there are many complicated motions 
involving rotation and acceleration (such as the graveyard spiral) that are 
perceptually indistinguishable from other complicated, and even simple, 
motions. The development in the present paper of subject-coincident coordi- 
nate systems and the categorization of sustained motions form the foundation 
for further research on spatial disorientation; for example, a full classification 
of perceptually indistinguishable sustained motions is given in Holly and 
McCollum (1995), building upon the theory developed in the present paper. 

2. SUBJECT-COINCIDENT COORDINATE SYSTEMS 

Following the standard set by Hixson et al. (1966) (see also Guedry, 
1974), self-motion is specified according to a coordinate system oriented 
with the head, as shown in Fig. 1. Forward and backward linear accelerations 
are along the x axis with forward being in the positive x direction, leftward 
and rightward linear accelerations are along the y axis with leftward being 
positive, while upward and downward are along the z axis with upward being 
positive. The convention of having unit vectors i, j, and k in the x, y, and 
z directions, respectively, is followed. Similarly, angular accelerations are 
specified in the xyz coordinate system, using the right-hand rule. In particular, 
rightward roll is given by a vector in the positive x direction, forward pitch 
is given by a vector in the positive y direction, and leftward yaw is given 
by a vector in the positive z direction. Even though these coordinates do not 
correspond exactly with the axes of the vestibular end organs, they serve 

a 
Z 

Fig. 1. Standard coordinates for specification ofhead motion. (a) Coordinates for linear motion, 
and standard unit vectors. (b) Coordinates for angular motion, and standard unit vectors. 
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as a means to discuss and relate various motions from the perspective of 
the subject. 

Hixson et al. (1966) speak only of accelerations, but we include velocities 
(and thereby, the visual system, which can detect velocity relative to the 
environment) in our discussion. Linear and angular velocities of the subject 
are specified with the x, y, and z directions being the same as for accelerations 
(See Fig. 1). 

This system specifies motion from the vantage point of the subject, so 
now it is possible to ask questions such as, "During a coordinated turn of 
an airplane, what is the motion description from the vantage point of the 
pilot?" The converse question is asked by the subject, "When I sense a 
forward linear velocity combined with z-directed linear acceleration and 
angular velocity about an off-z-axis, what is the airplane doing?" The answer 
to these questions and the manner in which humans handle questions such 
as the latter have a direct bearing not only on a pilot's ability to avoid 
disorientation, but also on every person's ability to balance and navigate 
during everyday movement. 

In tackling the problem of the relationship between the head-based 
description of  movement and an earth-based description of movement, we 
encounter the fact that acceleration is not the time derivative of velocity in 
the head system, and upon closer inspection, we see that the coordinate 
system is in some sense both moving and stationary. The coordinate system 
is moving with the head; however, linear velocity of the head is not necessarily 
zero with respect to the coordinate axes that are "fixed" in the head. More 
accurately, the coordinate axes are coincident  with the head. In order to 
specify velocity or acceleration at a given point in time, the coordinate axes 
must stay fixed in position relative to the earth so that head movement can 
be measured within them. Of course, the coordinate axes can be fixed in 
position only momentarily since their position needs to coincide with that of 
the head at all times. 2 

Coordinate systems with similarities to that described above are encoun- 
tered in traditional studies of rigid-body motion. In the standard physics 
literature (e.g., Goldstein, 1980), calculation of angular velocity of a spinning 
top using axes oriented with the top, for example, leads to the same value 
as would be measured using a top analog of the head coordinate system 
above. However, this calculation of  angular velocity proceeds by way of 
angular momentum, and angular momentum is peripheral to the present needsi 
vision detects velocity, not momentum. In addition, we need a system that 
measures not only angular velocity, but also linear velocity in this unusual way. 

2Another way to describe this situation is that motion is measured over time by using a 
continuum of distinct sets of earth-fixed coordinate axes coincident with the head. 
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Perhaps the coordinate systems most similar to ours are found in aeronautical 
engineering (e.g., Britting, 1971; Etkin, 1959), where linear velocity of an 
aircraft is sometimes described in terms of a nonzero vector specified in a 
coordinate system oriented with the aircraft. 

The coordinate systems used in the present work capture the subject's 
vantage point during movement; for purposes of self-motion perception 
research, we define a subject-coincident coordinate system to be the natural 
generalization of the head coordinate system described above. 

Definition 1. A subject-coincident coordinate system is given by a set 
of coordinate axes fixed in position relative to the object in question (such 
as the head), and for which movement of the object is specified in the 
following way: At each point in time, aspects of motion such as the linear 
velocity, linear acceleration, angular velocity, and angular acceleration of the 
object are given by their measurements in the (traditional) coordinate system 
whose axes are positioned with the coordinate axes of the object, but that 
are fixed in space relative to a predetermined "reference object" (such as 
the earth). 

To investigate a subject's vantage point during self-motion and how it 
relates to an outside observer's viewpoint, equations relating these subject- 
coincident systems and traditional (e.g., earth-fixed) coordinate systems are 
useful. For completeness, and because our interests lie in components of 
motion such as velocity and acceleration rather than the commonly discussed 
aspects such as momentum and force, we derive from first principles the 
equations relevant to our purposes. In deriving the equations, we set the 
following conventions: 

The object of interest is taken to be a subject's head, and "head-coinci- 
dent" is often written in place of "subject-coincident," although the equations 
hold for any given object of interest, not just a head. The reference object 
is taken to be the earth. Note that small forces due to rotation of the earth 
are usually considered too subtle to be a factor in human sensory reception; 
however, this assumption is not strictly necessary here, and all equations and 
results in this paper hold even when the reference object has a noninertial 
reference frame. The vectors for velocities and accelerations of the head in 
the head-coincident coordinate system are given in units of measure and by 
notation as follows: 

�9 Linear velocity in rrdsec (meters/second) is denoted by hv 
�9 Linear acceleration in rrdsec 2 is denoted by ha 
�9 Angular velocity in rad/sec (radians/second) is denoted by hto 
�9 Angular acceleration in rad/sec 2 is denoted by hat 



Subject-Coincident Coordinate Systems 451 

Since each of these vectors has a value at each point in time, they are 
considered functions of time t and written as %(0, ha(t), h{o(t), and hot(t), 
respectively. Those same vectors described in a predetermined coordinate 
system fixed relative to the earth, called the earth-fixed coordinate system 
here, are written as EV(t), Ea(t), Eo~(t), and Eo~(t), respectively. An uppercase 
superscript such as E is meant to indicate that the coordinate system is of the 
traditional type, while a lowercase superscript such as h is meant to signify 
a subject-coincident coordinate system. Vectors in each system are represented 
as column vectors for our calculations. 

In keeping with the particular problem at hand, we assume the three 
axes of the head-coincident coordinate system are orthogonal, and that the 
three axes of the earth-fixed coordinate system are orthogonal. 

A single linear transformation will perform the job of taking hv to %, 
ha to Ea, hoj to eco, and ha to Eot. This linear transformation is a rotation 
describing the orientation of the head-coincident coordinate axes relative 
to the earth-fixed coordinate axes. While three-dimensional rotations are 
sometimes described in terms of two or three successive rotations, the present 
three-dimensional rotation is most simply described as a single rotation (possi- 
ble by Euler's theorem). For example, if the two coordinate systems start in 
alignment, and then the head rotates for 1 sec with constant angular velocity 
Eco (choosing earth-fixed coordinates because they give a fixed reference 
frame within which to specify a constant angular velocity), we say that the 
new angular position of the head axes is (1 sec)(er rad/sec) = er rad. 

In general, the angular position of the head described by rotation for t 
seconds at angular velocity er is Etot rad. The symbol used here for angular 
position of the head with respect to the earth is ~, given in radians (rad). 

Straightforward (but nontrivial) vector calculations reveal that the con- 
version from head-coincident coordinates to earth-fixed coordinates when 
the head axes are at nonzero angular position 

relative to the earth-fixed axes is given by the linear transformation described 
by the matrix 

/ S12 SI3~ 
/ 1 

R(~) : ~ \ s31 $32 $33j / 
(1) 
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where 

s,1 = ( l~ l  2 - ~ ) c o s l ~ l  + 

s~2 = - ~  cos l~ l  - ~ 1 ~  

s,3 = - ~  cos l~  I + ~1~1 

sz, = - ~ ,  cos l~  I + ~=1~1 

s ~  -- (1~1 ~ - ~ ) c o s l ~  I + 

sz3 = - ~ y ~  cos l~  I - ~1~1 

s~, = - ~  cos l~  I - ~,1~ 

s~2 = - ~ z  cos l~ l  + ~ 1 ~  

s33 = ~1~12 - ~ )  c o s l ~ l  + 

When ~ = 0, R(~) is the identity matrix. 

I sinl~ I + ~ y  

sin l~ + ~ z  

sin[~ + ~ y  

~y~ 

sin I~ + ~y~z 

I sin[~l + ~ z  

[ sinl~[ + ~y~jz 

(2) 

Since angular position ~ can change as a function of time, we write ~(t) 
to denote the dependence on time t, and the matrix R becomes R(~(t)). 

The value of  ~(t) as t changes is not necessarily provided explicitly in 
a given real-life problem, so it may be computed from angular velocity by 

~(t) = Eta('r) d'r + ~(0) (3) 

for all t whenever there exists c 4 : 0  with/j(0) I1 c and Eto('r) II c for all "r 
(0, t), i.e., whenever rotation occurs about a fixed axis. Similarly, ~ may 
be computed from Ea by 

Io Eta( t )  = Eot('r) d'r + Eta(O) (4) 

for all t whenever there exists c :/: 0 with Eta(O) II c and Et~('r) IIe for all "r 
E (0, t). 

In more generality, if rotation occurs about a succession of axes, R(~(t)) 
may be computed by a product depending on the angular velocity. For exam- 
ple, if there exist el, c2 v~ 0 such that ~(0) II el and Eta('r) II c2 for all "r 
(0, t), then R(~(t)) = R(flo Eta(r) d'r)R(~(0)). This equation can be extended 
to cover any finite sequence of rotations, but such an extension is not necessary 
for the investigation in this paper. 

The most general case of  rotation about a continuously varying axis can 
be analyzed using quaternions, but it suffices for present purposes to consider 
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fixed axes of  rotation. Therefore, we take advantage of  the relatively simple 
equations (3) and (4) and reserve discussion of  quaternions for future work. 

Equations (5)-(13) below hold for all motions, including those with 
continuously varying axes of  rotation. The vector ECO may be computed 
from %0, 

Eft(t) = R(~(t)) boo(t) (5) 

for all t. If angular acceleration is not known in earth-fixed coordinates, it 
can be calculated from ~a, 

Eot(t) = R(~(t)) hot(t) (6) 

for all t. Notice that equations (3) and (5) are coupled, as are (3), (4), and 
(6). Fortunately, our applications avoid the difficulties that this coupling 
might create. 

Linear velocity in earth-fixed coordinates may be computed from by, 

EV(t) = R(~(t)) hV(t) (7) 

for all t, or from Ea, 

Ev(t) = ~a('r) d'r + EV(0) (8) 

for all t. If linear acceleration is not known in earth-fixed coordinates, it can 
be calculated from ha, 

Ea(t) = R(~(t)) ha(t) (9) 

for all t. 
For the other direction, to compute the head-coincident coordinate values 

of  velocities and accelerations from their earth-fixed values, the inverse of 
the linear transformation given by R(~(t)) is used: 

by(t) = R(~(t)) -l Ev(t) (10) 

ha(t) = R(~(/)) - t  Ea(t) (11) 

hot(t) --- R(~(t)) -I Eco(t) (12) 

ha(l) = R(~(t)) -I Ea(t) (13) 

for all t. 
The above equations can be combined to obtain the general relation 

f2 hv(/) : R(~(t))-I R(~('r)) ha('r) dr  + hV(0) 

relating velocities and accelerations in the head-coincident system, and when 
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rotation is about a fixed axis, it is not difficult to show that the corresponding 
equation for angular motion reduces to 

fo boo(t) = ha(x) dr + hr 

The final equation below is not used in this paper, but it follows immediately 
from the equations above, and gives the trajectory of the head in earth-fixed 
coordinates. Writing r(t) for the linear position in earth-fixed coordinates of 
the origin of the head-coincident system, we have 

fo r(t) = %(-r) d-r + r(O) 

= R(~('r)) hV(X) d'r + r(0) 

for all t. 

3. MOTIONS AND SUSTAINED MOTIONS 

In this section, we present formal definitions of motion and sustained 
motion, and investigate the set of sustained motions. The equations of Section 
2 are used extensively in proving the results here. Section 4 serves to consoli- 
date the results in this section by giving a categorization of the set of sus- 
tained motions. 

For self-motion perception, not only are linear and angular velocities 
and accelerations important, but orientation relative to the earth (or other 
host planet or moon) is relevant because of the gravitational field. The 
gravitational pull induces an upward reactionary force on the soles of the 
feet when standing on a rigid surface, for example; this z-directed force on 
the body is the same as that occurring during acceleration in the z direction. 
In this way, gravity behaves exactly like linear acceleration (this fact being 
Einstein's principle of equivalence), and we indicate orientation, or "attitude," 
relative to the gravitational field by a vector ag, the attitude vector, pointing 
away from the ground. The magnitude of ag is equal to that of the acceleration 
due to gravity of a free-falling body (which is approximately 9.8 m/sec 2 at 
the surface of the earth). 

In order to specify a subject's perspective of self-motion at a given point 
in time, the following formal definition is made: 

Definition 2. A motion, referring to head motion at a given point in 
time, is a five-tuple of vectors in the head-coincident coordinate system of 
Fig. 1, the vectors for: 
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1. Linear velocity, denoted by v 
2. Linear acceleration, denoted by a 
3. Angular velocity, denoted by co 
4. Angular acceleration, denoted by ot 
5. Attitude, ag 

We denote the set of  all possible motions by M. In general, vectors like these 
are transformable between different coordinate systems and different units 
of measure, but we fix units of measure in advance in order to deal formally 
with the set of motions in the results that follow. We fix units m/sec for v, 
m/sec 2 for a, rad/sec for co, rad/sec 2 for oL, and g-units for ag (1 g-unit -~ 9.8 
m/sec2), so that a motion is technically a 15-dimensional vector in R 3 >< R 3 

)< R 3 >< R 3 >< R 3 (where R denotes the set of  real numbers), and M is a 15- 
dimensional vector space. (The results in this paper hold equally for other 
units of  measure; the choice is arbitrary.) 

Two examples of  motions are given in Fig. 2. Forward travel at 800 
km/hr (~222  m/sec) while seated in a passenger jet  can be specified by the 
appropriate vectors v, a, to, oL, and ag, as shown in Fig. 2a; a "rr/3 rad/sec 
counterclockwise rotation while seated on a rotating chair can be specified 
as shown in Fig. 2b. Each of these motions is a member of the large set M. 

Both forward linear velocity and constant rotation are motions that can 
be sustained over time. In contrast, there are certain motions whose specified 
vectors cannot be sustained over time; for example, an upright position (ag 
in the z direction) paired with forward pitch (co in the y direction) causes 
the subject to face downward at some point, hence the resulting attitude is 
not in agreement with the original vector ag. In formally defining "sustained 
motion" we want as many of the vectors describing such a motion to be 
sustainable over time. However, because nonzero accelerations can cause 
velocities to change over time, it is unreasonable to expect all velocities and 
accelerations to remain constant; instead, we require accelerations to remain 
constant and allow velocities to change only in simple ways as follows: 

a b 

,;&, I g-unit in magnitude 

, 222m/s in magnitude 

X 

, 1 g-trait in ma/~mde 

y 

Fig. 2. Two motions belonging to the set M. (a) Forward travel at 800 km/hr  ( ~ 2 2 2  m/sec). 
(b) Counterclockwise rotation o f  at/3 rad/sec. Note that because v, co, and ag use different units 
of  measure,  no direct comparison of  their lengths is intended. 
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Definition 3. A sustained motion is a motion (given by v, a, to, at, ag) 
with l agl = 1 g-unit, and for which the linear acceleration, the angular 
acceleration, and the attitude would remain equal to a, at, and a s, respectively, 
throughout performance of the prescribed movement, while the linear velocity 
and the angular velocity would remain parallel to v and to, respectively; in 
addition, if a is nonzero, then the specified v is required to be nonzero, and 
if at is nonzero, then the specified to is required to be nonzero. 

To phrase the requirements of a sustained motion in technical terms, let 
0 be the magnitude of the angle between ag and the head's positive z axis, 
and let 

a g •  
6 = 0  l a g x k  i 

(k being the unit vector in the z direction). Notice that the x'y'z' coordinate 
system that is in angular position - 6  with respect to the head-coincident 
system has an earth-horizontal x'y' plane; let this coordinate system be the 
earth-fixed reference system for the present discussion. Now, ag must have 
magnitude 1 g-unit, and to help fulfill "attitude remains equal to ag," to must 
equal cag for some real number c (possibly zero). If a :~ 0, then v must be 

0, and if at :~ 0, then to must be :/: 0. Noting that the vectors v, a, to, at, 
and ag are not functions of time, but are single vectors, define acceleration 
functions of time by ha(t) = a for all t, and ha(t) = at for all t. By setting 
hv(0) = V, nto(0) = to, and 6(0) = ~, we find that equations (1)-(13) determine 
the values of hv(t), hto(t), and ~(t) for all t. For the given motion to be a 
sustained motion, there must be functions p, q: R --> R such that, for all t, 

by(t) = p(t)V and hto(t) = q(t)to 

In analogy with the notation M for the set of motions, we denote the 
set of sustained motions by Ms. 

Physiologically speaking, sustained motions are those whose compo- 
nents, as detected by a subject, are relatively constant. Detected linear acceler- 
ation is constant, detected angular acceleration is constant, detected linear 
velocity is constant in angle (relative to the subject), and detected angular 
velocity is constant in angle. The only reason that we do not require velocities 
to have constant magnitude is that the resulting set of motions would then 
be trivial from the viewpoint of vestibular research, and would lead to few 
interesting experiments. As defined presently, sustained motions form a large 
collection of motions, many of which are experimentally feasible; because 
of the constant nature of sustained motions, psychophysicai measurements 
of self-motion perception are tractable. 
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We already know that certain sustained motions cause misperception or 
disorientation due to the leveling off of peripheral receptor response, either 
at resting level or another level. It is therefore reasonable to predict that 
calculation of the full set of sustained motions will lead to the discovery of 
additional motions causing misperception or disorientation. The present paper 
performs the required analysis, and gives a complete categorization of the 
set of sustained motions. Further work in Holly and McCollum (1995) builds 
upon the present work, leading to the prediction of entire classes of  perceptu- 
ally indistinguishable motions. 

With the formal definitions above in mind, the investigation of  the 
set Ms is carried out by characterizing the different types of sustained 
motions. Lemmas 1, 2, and 4 concentrate on those sustained motions 
with zero angular velocity, nonzero angular velocity with zero angular 
acceleration, and nonzero angular acceleration, respectively. Although the 
head-coincident system has certain nontraditional properties, the equations 
of Section 2 provide a firm foundation from which the proofs of Lemmas 
1, 2, and 4 can proceed in a straightforward manner. Lemma 3 demonstrates 
the linear independence of a certain set of functions that appears in the 
proof of Lemma 4 and the mathematics is of a different nature than most 
in this paper. Results on linear independence of functions turn out to be 
indispensable in the proofs of Lemmas 2 and 4, and also underlie some 
reasoning in the proof of Lemma 1. 

The remainder of this section consists of formal statements and proofs 
of the crucial results on sustained motion; these results are consolidated and 
restated in a less technical language in Section 4. 

Lemma 1. If to = 0, at = 0, and ag = k, then the motion (v, a, to, at, 
ag) is a sustained motion if and only if the vectors satisfy 

v E R  3, a E R  3, t o = 0 ,  a t = 0 ,  a g = k  

v l l a ,  a =~ 0 ==~ v #= 0 

(where " ~ "  stands for "implies"). 

Proof. Assume that the values to = 0, at = 0, and ag = k are given. 
To determine the values that v and a must take for (v, a, to, at, as) to be a 
sustained motion, we refer to the technical requirements of sustained motion. 
The value ag = k gives ~(0) = ~ = 0. The values to = 0 and at = 0 prescribe 
zero angular movement as time varies [since at(t) is set to at for all t], so 
equation (3) immediately gives ~(t) = ~(0) = 0. 
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The  matr ix  R(~( t ) )  is thus the identi ty matr ix  (for  all t), and we obtain 
Ev(t) = by(t) and Ea(t) = ha(t) = a for  all t, as well  as EV(0) = hV(0) = V. 
Next,  we use equat ion (8) to see that for  all t, 

fo hV(t) = EV(t) = Ea('r) d'r + EV(0) 

fo = a d ' r  + v 

= a t + v  

Given  this formula,  in order  for  hv(t) to be  parallel  to v for  all t, a and v 
must  be parallel.  (In the case a = 0, every  vector  v is parallel to a.) 

Therefore ,  one requi rement  is that v II a.  Under  the present  condit ions,  
the definit ion o f  sustained mot ions  gives no addit ional  restrictions other  than 
a ~ 0 ~ v v~ 0, concluding the proof .  Q E D  

For  L e m m a s  2 and 4 that follow, the convent ion  is made  that 

V "~" Vy , a =  ay 
\v~/ a~ 

L e m m a  2. I f  to :/: 0, ot = 0, and ag = k,  then the mot ion  (v, a ,  to, or, 
as) is a sustained mot ion  if and only if  the vectors  satisfy 

t o = t o k  for  some  nonze rooJ  ~ R, a = 0 ,  et s = k  

and either (i) 

ax = ay = O, O :/: az ~ R,  Vx = Vy = O, O =/: vz ~ R 

or (ii) 

a y  ax 
ax ,  a y  E R ,  a z = 0 ,  Vx = - - ,  vy  - , v z ~ R 

P r o o f  Assuming  that the values  ot = 0 and ag = k are given,  the 
definit ion of  sustained mot ion  requires that to = Cag for  some  real number  
c. Assuming  for  this l e m m a  that to :/: 0, we  write to = o~k = toag, where  
to :~ 0. 

Given  c~, as, and to as described,  the values that v and a must  take for  
(v, a,  to, et, as) to be a sustained mot ion  are de te rmined  by using the technical  
requirements  o f  sustained motion.  The  value a s = k gives 6(0) = ~ = 0, 
making  R(~(0)) the identity matr ix.  Sett ing hto(0) = to and hV(0) = V, we  
obtain f rom equations (5) and (7) with t = 0 
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E t o ( 0 )  = h t o ( 0 )  = tO = t o k  

% ( 0 )  = hv(0)  = V 

In order to analyze the situation as time varies, we must know the form 
of the linear transformation R(~(t)), which depends on ~(t). To obtain ~(t) in 
general, we want to use equation (3). But first: Note that since all angular 
movement is about a vertical axis, the head-coincident coordinate system 
and the earth-fixed coordinate system always have their z axes aligned. This 
means that for all values of  t, the transformations from head-coincident to 
earth-fixed coordinates and vice versa leave z-directed vectors unchanged. 
With this in mind, setting ha(t) = ot = 0 for all t, we see that 

Eot(t) = hot(t) = ot = 0 

for all t, by equation (6) in combination with the fact that z-directed vectors 
(including the trivial zero vector) remain unchanged by the linear 
transformation. 

Proceeding toward the calculation of ~(t) and R(~(t)), equation (4) gives 
EtO(t) = Eto(0) = tok for all t since Eot(r) = 0 for all "r. Then equation (3) gives 

~(t) = Eto('r) a-r + ~(0)  

= tok d'r + 0 

= totk 

for all t since rotation is about a fixed axis. Substituting totk for ~ in equations 
(2) and ( l)  (with ~ = O, ~y = O, ~z = tot, and I~1 = to), we obtain for the 
matrix R(~(t)) 

for all t. 

\ ofC~ - s i n t o t  ! )  
R(t~(t)) = [ s i n t o t  cos tot 

0 
(14) 

The trick now is to find which values of  v and a cause  hv(t) to remain 
parallel to v as time t varies. Setting ha(t) = a for all t, as suggested in the 
definition of  sustained motion, the form of Ea(t) can be obtained from equa- 
tions (9) and (14): 

\ lax cos tot - a y  sin tot) 
Ea(t) = R(~(t)) ha(t) = lax sin tot + ay cos tot 

az 

for all t. 
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The use of  equations (8) and (10) in succession results in an expression 
for hv(t) which can then be analyzed for "parallelism with v." First, equation 
(8) gives 

ax ay ~-~l Vx + -- sin tot + - -  cos tot - ay\ 

I0 
tol 

%(t) = Ea('r) d'r + %(0)  -- ax ay 
vy - - -  cos tot + - -  sin tot + 

to to 

v. + ad 

for all t. To use equation (10) next, note that the inverse of R(~(t)) is just 
the transpose of  R(~(t)), and the result of the calculation is 

hv(t) = R(~(t)) -I EV(t) = 

a y + ( v  x _ _ ~ ) c o s t o t + ( v y + -  sintot 

ax + Vy + cos tot + -Vx + sin 
to 

v z + azt 

col 

for all t. What remains is to determine the values of  vx, vy, vz, ax, ay, and a z 
for which the three components of the vector hv(t) in (15) are in direct 
proportion to one another as functions of  t on R (the function identically 
equal to zero being in direct proportion to every real-valued function on R). 
There are two cases to analyze. 

Case a z :/: O. For the first component of  the vector hv(t) in equation 
(15) to be directly proportional to the third component vz + azt, where az :/: 
0, says that there exists a nonzero constant c ~ R such that 

V z + a z t = c ( ~ + ( V x - ~ ) c o s t o t + ( v y + ~ ) s i n t o t )  

for all t. Therefore, the terms ay/to, (vx - ay/to), and (vy + affto) must all 
equal zero; this follows from the fact that for every nonzero to, the set { 1, 
t, cos tot, sin tot} of  functions o f t  ~ R is a linearly independent set of  functions 
on R. By a similar analysis requiring the second and third components of 
%(0 to be directly proportional, we also see that -ax/to must equal zero. In 
summary, the only permitted values under the given assumptions when a z :~ 
0 are 

a x = a y = 0 ,  0 : ~ a z E R ,  Vx=Vy=O,  0 4 : v z ~ R  

where vz :~ 0 is required by the definition of  sustained motion since a :~ 0 

(15 
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here. These permitted values are exactly those of (i) in the statement of 
the lemma. 

Case az = 0. Checking the direct proportionality of the first two compo- 
nents of hv(t) in equation (15), suppose that 

ay+(v  x ~ ) c o s t o t + ( v y + ~ ) s i n t o t  
to 

(ax ( ) 
= c  - ~ +  v y +  cos tot+ -Vx+ sin tot (16) 

for some c ~ R. Using the fact that the set { 1, cos tot, sin tot} of functions 
of t e R is a linearly independent set of  functions on R, and setting the 
corresponding coefficients in (16) equal to one another, we obtain that the 
resulting system of linear equations reduces to 

ay ax ay = c( -ax) ,  Vx = - - ,  v r - (17) 
to  to  

Now, just in case the first component of  hv(t) can be identically zero while 
the second is nonzero, an analogous calculation must be done, starting with 
the supposition (second) = d(first) for some d ~ R. The resulting relationships 
between a~, a~, v~, and Vy happen to be the same as in (17), except that - a~  
= d(ay) instead of ay ---- c ( - -ax) .  Since the constants c and d in the equations 
can be any real numbers, we conclude that 

ay ax 
ax ,  ay E R ,  a z = O ,  V x = - -  , I Iy  - -  , V z E R 

to to 

are the permitted values for a sustained motion when a z = 0, under the given 
assumptions. From the definition of  sustained motion, we see that there are 
no other restrictions. These permitted values are exactly those of (ii) in the 
statement of  the lemma. 

In summary, a sustained motion with co 4: 0, a = 0, and ag = k must 
have values v and a given by (i) if az :~ 0 and by (ii) if a z = 0. QED 

Before proceeding with the investigation of  Ms, Lemma 3 is necessary 
(to be used in the proof of  Lernma 4). 

Lemma 3. For every to ~ R and every nonzero ct ~ R, the set 

ot) 
sin( o   t) 
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cos(~ett2+tot) I~cos(~etr2+tor)dr+sin(~at2+tot ) 
I i  s i n ( l  a ' r2+  cox)dr, 

cos(2ett2+tot) Is ) 

of functions of t ~ R is a linearly independent set of functions on R. 

Proof. We give the proof for the case a and to nonnegative; the proofs 
for the other cases are similar. Fix e~ > 0 and to ~ O. Suppose that 

(1 ) (I ) 
bl cos ~ a t  2 + tot + b 2 sin ~ o~t 2 + tot 

+b3(cos(lat2+tot) Iicos(lotr2+tor)dr 
+sin(~ett2+tot) Iisin(~c~r2+toT)dT ) 
+b4(cos(l~tz+tot) Iisin(letx2+to'r)dr 
-sin(lett2+tot) Jlcos(~ar2+to'r)dr)=--O (18) 

for some bl, b2, b3, b4 ~ R (where " ~  0" means " =  0 for all t ~ R"). The 
goal is to show that bl, b2, b3, and b4 must all be zero. 

By substituting t = 0 into equation (18), all terms become zero except 
the first, so bl must be zero. Now let 

~/to2 + o~n'rr -- co 
tn = , n =  1 , 2 , 3  

os 

so that (�89 + tot.) = n'rr/2 f o r n  = 1, 2, 3. Knowing that bl = 0, we 
substitute successively t = t l ,  t = t2, and t = t3 into equation ( 1 8 )  and make 
the change of variable cr = �89 2 + tot in the integrals to get the three equations 
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Oo )  (fo ' ) b ,,/2 1 sino 'do" - 4 coso-do- = 0  
b2 + 3 4(t) 2 + 2RO- ~/r 2 + 2Cto- 

( f l  ~ 1 ) ( IO 1 s ino-d~  = 0  -b3  x/to 2 + 2cto- cos o- do- - b4 x/t..O 2 + 2eto- 

) /(3~r/2 1 ) 
/ (3"rd2 1 Sill O" do" -{- b4~Jo cos o" do" = 0  

(19) 

Let  

f 
.~r2 1 

I .=  
J0 x/u)2 + 2ao.  
fn~a 1 

"I" = ,/co 2 + 2~o .  -to 
n =  1 , 2 , 3  

cos o. do., 

sin or do., 

The  system (19) is equivalent  to the system 

b 2  + b 3 J i  - b4Ii  = 0 

- b 3 1 2  - b 4 J 2  = 0 

b4(12(II - -  /3) -k- J2(Jl - J3)) = 0 

so to show that b2 = b3 = b4 = 0, it suffices to show that (12(I1 - /3) + 
J2(J~ - J3)) 4 : 0  and that 12 4: 0. 

We know that J2 > 0 since sin o. > 0 for  o. ~ (0, "rr), and that (ll - 
I3) > 0 since cos o. < 0 for o. ~ (7r/2, 3"rr/2). We claim that 12 > 0 and (J1 
- J3) > 0 also. Note  that 1/(o~ 2 + 2ao. )  I/2 is a strictly positive, strictly 
increasing function o f  cr for o. > 0 (since a > 0). Using this and the fact 
that cos o. > 0 for  o. ~ (0, ~r/2) and cos o. < 0 for  o. ~ ('rr/2, "rr), we obtain 

6 =  ,/oo 2 + 2 a o  
cos o. do. 

Io ":2 I I~' I ---- COS (Y do" + cos o r do" 
~/oJ 2 + 2o~o. /2 ~/~ + 2oLo. 

cos o. do" + ~/~o 2 + 2a('tr/2) cos o. do. 
> ~/OO 2 + 2ao. /2 

jO 'r2 1 ~ , 2  1 = cos o. do. - ~/co 2 + 2ao. Jo ~/ca2 + 2a (~ /2 )  cos o. do. 
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I i  ~r2 1 ~'~/2 1 
> ~/to2 + 2otcr cos r dcr - x/to 2 + 2~cr cos crdcr 

,/0 

= 0  

A similar  trick can be appl ied to (Jl - J3) to show that (Jl - J3) > 0. 
Therefore ,  (12(I1 - 13) + Jz(JI - J3)) > 0 and 12 > 0, imply ing  that bE 

= b3 = b4 = 0. Q E D  

The final l e m m a  deals with sustained motions  that have  nonzero  angu- 
lar acceleration.  

I_emma 4. I f  ot 4 : 0  and ag = k, then the mot ion  (v, a, to, ,~,, ag) is a 
sustained mot ion  if and only if  the vectors  satisfy 

to = tok for  some  nonzero  r ~ R 

, ,  = c~k for  some  nonzero  oL ~ R 

ag = k ,  ax = ay : O, a z E R ,  vx = vy = O, v z ~ R 

az g: O ~ vz 4: O 

P r o o f  Assuming  that a e = k, and that a nonzero at is given,  the definit ion 
of  sustained mot ion  requires to 4: 0, and in particular, to = tok for  some  
real n u m b e r  to 4: 0. 

Cont inuing with the definit ion o f  sustained mot ion,  we  have  that the 
value ag = k gives ~(0) = ~ = 0, making  R(~(0)) the identity matr ix.  Set 
hOt(t) = ot for  all t, set hto(0) = to, and set by(0) = V. Then  equat ions (5 ) - (7 )  
with t = 0 give 

Eot(0) = not(0) = ot 

Eto(0) = hto(0) = tO = tok 

%(0)  = hv(0) = V 

respectively.  Equat ion (4) shows Eto(t) to be  

Eto(t) = Eot('r) d'r + Eto(O) 

= Eot('r) d'r + tok 

for all t since rotation is about  a f ixed axis. Because  Eto(t) must  be parallel  
to tok for  all t, and Eot('r) is a cont inuous  function o f  "r, we  conclude  that 
Eot(0) must  have  no nonzero  off-vert ical  (away f rom k) componen t .  In other  
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words, ~ot(0) = a k  for some et E R, this lemma requiring a ~ 0. Since 
hot(t) = ot for all t, we have 

ha(t) = ot = hot(0) = otk 

for all t. 
Using this expression for hot(t), we can obtain expressions for Eot(t), 

Eto(t), ~(t), and R(~(t)) in succession. First, note that all angular movement 
is about a vertical axis, so the head-coincident coordinate system and the 
earth-fixed coordinate system always have their z axes aligned. This means 
that for all values of t, the transformations from head-coincident to earth- 
fixed coordinates and vice versa leave z-directed vectors unchanged. With 
this in mind, we see that 

Eot(t) ---- h~t(t) = otk 

for all t, since the z-directed vector a k  remains unchanged by the linear 
transformation in equation (6). 

Equations (4) and (3) result in 

EtO(t) = (a t  + to)k 

,( t)  = (1  ott2 + tot)k 

for all t. Substituting (�89 2 + o~t)k for ~ in (2) and (1), we find for the 
matrix R(~(t)) 

{(' ) ( ' )  cos ~ ~t  2 + cot - s i n  ~ ~t 2 + cot 

- - /  ( 1 )  ( 1 )  R(f~(t)) sin ~ ~t 2 + cot cos ~ ett 2 + cot 

0 0 

for all t. 

0 

(20) 

With an expression for R(~(t)), we can concentrate on finding which 
values of  v and a make the present motion a sustained motion, by finding 
which values of v and a cause by(t) to remain parallel to v as time t varies. 
Setting ha(t) = a for all t, we have from equations (9) and (20) 

( ( 1  toi _aysln(~ett2+tot) I ) "(' )1 Ea(t) = R(~(t)) ha(t) = 1 + 1 
a~ sin ~ ~t 2 + tot ay cos ~ ~t 2 + cot 

az 

for all t. Equation (8) gives 
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%(0 = Ea(x) d'r + %(0) 

= ' 1 t 1 
Vy "l- ax sin ~ O~T 2 + tot d'r + ay cos ~ oft 2 4- tot dT 

v z + azt 

for all t. To use equation (10) next, note that the inverse of  R(~(t)) is just 
the transpose of  R(~(t)). Letting 

f(t)  = cos ett z + tot , 

for all t, we obtain from equation (10) 

hV(t) = 

g ( t ) =  sin( 1 oft2+ tot) 

( Ii fl ), 'v~f(t) + Vyg(t) + ax (t) f(x)  dx + g(t) g('r) d'r 

- ay(f(t) f l  g("r) d'r - g(t) f l  f('r) d'r) 

Vyf(t) -- Vxg(t) + ay (t) f('r) d'r + g(t) g(x) dr 

+ ax (t) g('r) d'r - g(t) f('r) d'r 

v z + azt 
(21) 

for all t. 
What remains is to determine the values of vx, Vy, vz, ax, ay, and az for 

which the three components of  the vector in (21) are in direct proportion to 
one another as functions of  t on R. By Lemma 3, the set 

(t), g(t), f ( t)  f('r) d'r + g(t) g('r) d'r, 

Io fo } f(t) g('r) d'r - g(t) f('O d'r 

of functions of t ~ R is a linearly independent set of  functions on R. Therefore, 
the first two components of  hv(t) in equation (21) are in direct proportion as 
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functions on R only if vz = vy = ax = ay = 0 or if there is a constant c 
R such that vy = CVx, -Vx  = cv~ a r = ca~, and ax = c( -ay) .  In the latter 
case, v~ = Vy = ax = a r = 0 is still the only solution. 

Having determined that Vx = vy = a~ = ay = 0 is required, the values 
of v z and az in the third component of hv(t) in equation (21) are fairly 
unrestricted by the definition of sustained motion. The only remaining require- 
ment is that Vz be nonzero whenever as is nonzero. These requirements, along 
with the expressions obtained for to [= hr and or, are exactly those in 
the statement of  the lemma. QED 

4. C A T E G O R I Z A T I O N  OF  SUSTAINED M O T I O N S  

The results of Section 3 can now be consolidated to give a complete 
description of  Ms, the set of sustained motions. The sustained motions fall 
into natural categories, and the description of  Ms is divided into those catego- 
ries, while the proof that this fully describes Ms is presented after the category 
listing and examples below. In each of the following descriptions, any velocity 
or acceleration not mentioned and not arising from those mentioned is 
assumed to be zero. 

Categories o f  Sustained Motion 

1. Fixed position. 
2. Linear velocity. This refers to linear velocity that is nonzero and 

constant. 
3. Linear acceleration. Nonzero acceleration is constant and parallel 

to the nonzero linear velocity. 
4. Angular velocity. Nonzero constant angular velocity occurs about 

an earth-vertical axis. The vertical axis is required in order for the 
attitude vector to remain fixed relative to the head. (The head itself 
need not be vertical.) Linear velocity may arise, but only in the 
form of  tangential velocity, as may linear acceleration only in the 
form of centripetal acceleration. 

5. Angular and linear velocity. Nonzero constant angular velocity 
occurs about an earth-vertical axis, and the linear velocity has a 
nonzero earth-vertical component in addition to a possible tangential 
component due to angular velocity at a nonzero radius. (Linear 
acceleration may arise in the form of centripetal acceleration.) 

6. Angular velocity and linear acceleration. Nonzero constant angular 
velocity occurs about an earth-vertical axis through the head, and 
nonzero linear acceleration is earth-vertical and constant (causing 
nonzero linear velocity). 
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7. Angular acceleration. Nonzero constant angular acceleration occurs 
about an earth-vertical axis through the head (causing nonzero angu- 
lar velocity). 

8. Angular acceleration and linear velocity. Nonzero constant angular 
acceleration occurs about an earth-vertical axis through the head 
(causing nonzero angular velocity), and linear velocity is nonzero, 
constant, and earth-vertical. 

9. Angular and linear acceleration. Nonzero constant angular accelera- 
tion occurs about an earth-vertical axis through the head (causing 
nonzero angular velocity), and linear acceleration is nonzero, con- 
stant, and earth-vertical (causing nonzero linear velocity). 

Table I gives a summary of the permitted values and the interdependenc- 
ies of v, a, to, or, and ag for each of the nine categories of sustained motion. 

Examples. 

A. Standing stationary on the ground is a member of category 1. 
Lying on one's back is also a member of category 1, as is hanging 
upside down. 

B. Traveling straight forward at 800 krn/hr in a jet is a member of 
category 2. 

C. A constant-velocity version of the graveyard spiral--sometimes 
called the spiral dive-- is  a member of category 5. (Actually, since 
there are many possible velocities, turning radii, and speeds of 
descent, there are technically many different spiral dives that are 
members of category 5.) 

D. Sitting in a chair rotating at "rr/3 rad/sec is a member of category 4. 
E. Sitting in a chair rotating at -rr/3 rad/sec and increasing speed at 

"rr/12 rad/sec 2 is a member of category 7. 

Theorem. The set Ms consists exactly of the motions in categories 1-9. 

Proof. Using v, a, to, or, a~, as usual, to specify a motion, first notice 
that Lemmas 1, 2, and 4 deal only with upright attitude, that is, ag = k. To 
deal with attitude other than upright, i.e., with l agl = 1 and ag ~ k, a 
simple preliminary transformation is necessary. To put the explanation in 
nontechnical terms, imagine the subject's head oriented according to ag (not 
necessarily upright). Now, picture an imaginary upright head occupying the 
same physical space as the subject's head. Attach the two heads (subject's 
and imaginary upright) termly together. At this point, use the appropriate 
lemma(s) on the imaginary head to see what kinds of motions are sustained 
motions of the imaginary head. Finally, assuming that the subject's head is 
fixed as described to the imaginary head, the subject's head will "perform" 
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a sustained motion exactly when the imaginary head "performs" a sustained 
motion. All of this can be made formal, but the conclusion is that Lemmas 1, 
2, and 4 work for any attitude by substituting the desired ag for k. (Incidentally, 
another way to approach the problem is to use a different head-coincident 
coordinate system if the subject is not upright.) 

Now, Lemma 1 shows that all sustained motions with to = 0, ot = 0, 
and ag = k have v II a along with a :/: 0 ~ v :/: 0. Categories 1-3 consist exactly 
of these motions and the corresponding motions with nonupright attitude. 

Lemma 2 shows that some sustained motions with co :~ 0, ot = 0, and 
a s = k have nonzero constant angular velocity with a vertical axis, along 
with nonzero vertical linear acceleration and velocity (a z, v z ~: 0). Category 
6 consists of exactly these motions and the corresponding motions with 
nonupright attitude. Lemma 2 shows that the remaining sustained motions 
with to :/: 0, tx = 0, and ag = k have nonzero constant angular velocity with 
a vertical axis, along with the horizontal components of a and v matching 
so that the movement is circular with a being the centripetal acceleration, 
while an additional vertical component of linear velocity is allowed. Catego- 
ries 4 and 5 consist exactly of these motions and the corresponding motions 
with nonupright attitude. 

Lemma 4 shows that all sustained motions with ~x #: 0 and ag = k have 
nonzero constant angular acceleration with a vertical axis, nonzero angular 
velocity with a vertical axis, and possible vertical linear velocity or vertical 
linear velocity and acceleration. Categories 7-9 consist of exactly these 
motions and the corresponding motions with nonupright attitude. 

Therefore, all sustained motions fall into categories 1-9 and we also 
see that categories 1-9 contain no other motions. QED 

5. DISCUSSION 

We have taken the subject's viewpoint in defining sub jec t -co inc iden t  

coordinate sys t ems  for self-motion, and in defining and classifying sus ta ined  

motions.  These subject-coincident systems, by incorporating the fact that the 
sensory receptors of an organism move with the organism, have unusual 
properties including the fact that acceleration is not the time derivative of 
velocity. The essential equations of motions are presented, as derived from 
first principles. These equations are necessary in the development of a classifi- 
cation of sustained motions, and after formally defining the concept of a 
sustained motion, we demonstrate that the set of sustained motions can 
be described by nine distinct categories which cover the various possible 
combinations of linear velocity, linear acceleration, angular velocity, and 
angular acceleration. 
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An important ingredient in the equations of motion is the linear transfor- 
mation that maps between subject-coincident coordinate systems and earth- 
fixed coordinate systems [see equation (1)]. While linear systems theory has 
been used in developing models of human spatial orientation such as that of 
Borah et al. (1988), the special properties of a subject-coincident coordinate 
system have yet to be made explicit. The incorporation of this physiologically 
natural type of coordinate system into models of human spatial orientation 
and self-motion perception may lead to interesting results. At the same time, 
the neuroscientist may ask whether a linear transformation such as that 
described in equation (1) takes place in the brain; transformations of various 
types are known to take place in several parts of the brain, and a transformation 
between subject-coincident coordinates and earth-fixed coordinates is an 
obvious candidate. [For an overview of the subject and of neuroscience in 
general, see Kandel et al., (1991).] 

Using subject-coincident systems, sustained motions are those for which 
the linear acceleration, angular acceleration, and attitude (orientation with 
respect to gravity) are sustainable over time while the linear and angular 
velocities change only in magnitude. The spiral dive in an airplane is an 
example of such a motion, whereas tumbling head-over-heels is an example 
where attitude is not sustained. The complete set of sustained motions is 
determined by using the equations of Section 2, resulting in the nine categories 
described in Section 4. 

Several observations can be made about the sustained motion categories. 
First, we observe that attitude is in some sense immaterial. More precisely, 
if a motion with a particular attitude is sustainable, then that same movement 
over the earth in any other attitude is also sustainable; hence, a pilot with 
head tilted to the side or leaning back is just as susceptible to the dangers 
of the graveyard spiral as a pilot sitting straight upright. 

Another observation is that a number of different combinations of linear 
and angular movement are possible in sustained motion. In particular, linear 
and angular acceleration may both be zero, both be nonzero, or either may 
be zero while the other is nonzero. One clear restriction through all categories 
of sustained motion, however, is that any angular movement must have an 
earth-vertical axis. In addition, if angular velocity is accompanied by nonzero 
angular acceleration, then the radius of rotation must be zero (the rotation 
being on-axis). For example, turn at a constant radius in a car is sustainable, 
but if there is accompanying acceleration, then the motion is not a sus- 
tained motion. 

In order to form a global picture of self-motion perception, many pieces 
are necessary. Experimental research has investigated certain classes of sus- 
tained motion [see review by Guedry (1974)], and it would be fruitful to 
investigate others. By definition, and by the nature of human physiology, 
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sustained motions cause the vestibular system to saturate or adapt due to 
peripheral receptor response leveling off. In adaptation, the vestibular system 
stops signaling movement, such as during constant-velocity rotation or during 
constant-speed flight. On the other hand, constant angular acceleration may 
cause saturation of the vestibular system leading to dizziness and motion 
sickness. Both adaptation and saturation can lead to disorientation and inaccu- 
rate perception of self-motion. 

As in all scientific work, an obvious inadequacy here lies in what is not 

explained. Now that sustained motions are characterized, what perceptions 
of self-motion are associated with them? How accurate is perceptionunder 
sustained conditions? When might one motion be misinterpreted as another 
motion? In attacking the latter question, recent work (Holly and McCollum, 
1995) using subject-coincident coordinate systems has identified and 
described entire classes of perceptually indistinguishable sustained motions, 
both when visual input is available and when it is not available. This work 
can help to identify possible problematic situations in air- and spaceflight, 
as well as in movement on the surface of the earth. (Skiers, snowboarders, 
and skaters have some practical experience in these matters; the author 
recently heard about a person snowboarding under low-visibility conditions 
down the side of Mt. Hood, suddenly realizing to his surprise that he was 
facing backward.) 

With a firm foundation in subject-coincident coordinate systems, self- 
motion research can proceed more easily in the direction of complex and 
changing motion. Until recently, most motion stimuli in experiments have 
been simple enough to describe with a few parameters. However, an occa- 
sional experiment such as those of Cohen et al. (1973) and Guedry et al. 

(1992) has needed a more complicated description of motion, so "acceleration 
profiles" have been used. These are, in fact, descriptions of motion within a 
subject-coincident system. Thus, subject-coincident systems are not only 
consistent with previous research, but provide a way to discuss both accelera- 
tions and velocities, relate the two by means of equations of motion that are 
custom fit to self-motion research, and give a standard by which to discuss 
and compare the wide variety of motions in experimental research. 
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